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On two-dimensional percolation 

A R Conwayt and A J Guttmann 
Depattment of Mathematics, The University of Melboume, Parkville. Vlctoria 3052, Australia 

Received 31 October 1994, in final form 8 December 1994 

Abs&ct. We present new series data far both high- and lowdensity bond and site permlation 
on the square lattice. The series have been obtained by the finiteAaice method, and in all cases 
extend pre-existing series. An analysis of these series gives refined estimates of critical points, 
critical exponents and amplitudes for bond and site animab, and for the percalation probability 
and mean-size exponents. 

1. Introduction and analysis 

In [l] we showed how the finite-lattice method (hereinafter abbreviated to E M )  can be used 
to generate series expansions for percolation problems. In this work we present :the longer 
series obtained from the FLM, and an analysis of the new data. 

In table 1 we give the zeroth-, first- and second-site perimeter moment coefficients, 
enumerated by area. Here, gx,t is the number of connected clusters with site area s and site 
perimeter t .  As usual, p is the probability that a site (or bond) is occupied, and q = 1 - p .  
In table 2 we give the corresponding series enumerated by perimeter. 

The second column of table 1 extends by one coefficient the series given some 13 
years previously by Redelmeier [Z],~ in 0.2% of the computer time used by Redelmeier's 
highly optimized program. Analysis of this series by first- and second-order differential 
approximants confirms and refines an earlier analysis [3] that the coefficients grow 
asymptotically as 

As-'AS where h = 4.06265 i 0.00005, 

Analysis of the higher moments reveals that the kth perimeter moment behaves 
asymptotically as AN'+'AS.  Assuming the above estimate of A, we find from the data in 
table 1 that 

Ao = 0.3160 f 0.0005 A ,  0.3777 f 0.0006 A2 = 0.4517 i 0.0005. 

It is significant that the amplitudes are increasing by a constant multiple of 1.195, as this 
implies that the mean perimeter 

(p ) .  N 1.1951 and ( p 2 h  - 1.195'n2. 

This implies zero variance, a result which is only true to leading order. An analysis of the 
variance confirms this, and we find 

var((p},) = (p'),, - (p): z 0.3885n. 

t Present address: Department of  Electrical Engineering, Stanford University, Stanford, CA 94305, USA. 
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Table 1. Raw enumeration of site data for enumeration by area (perimeter moment$). 

Coefficient of x" in 

1 1 
2 2 
3 6 
4 19 
5 63 
6 216 
7 760 
8 2725 
9 9910 

10 36446 
I1 135268 
12 505861 
13 1903890 
14 7204874 
15 27394666 
16 104592937 
17 400795844 
18 1540820542 
19 5940138676 
20 22964779660 
21 88983512783 
22 3455325726'78 
23 1344372335524 

' 24 5239988770268 
25 20457802016Oll 

4 
12 
44 

164 
624 

2412 
9436 

37205 
147488 
587018 

2343620 
9379367 

37609788 
151047810 
607429388 

2445415 156 
9853980544 

39738767634 
160366235260 
647542173314 

2616056891412 
10573603789434 
42753589936592 
172932369469100 

16 
72 

324 
1424 
6224 

27140 
118088 
512089 

2212964 
9531954 

40933836 
175299075 
748816324 

3191269054 
13571511648 
57602967180 

244050892096 
1032273460510 
4359548367412 

18385211 158762 
77431787430920 

32571 0977 158318 
I368494742069048 
5743589522421572 

These numerical results can be checked without assuming the value of A given above by 
extrapolating the sequence given by the quotient of terms in the third and second column of 
table 1. This quotient is independent of A, and is just the sequence (p )" .  Replacing column 
3 by column 4 gives the sequence ( P ' ) ~ .  

For directed animals [4] we find a similar situation, with 

( p ) .  - 0.75n and (p'). - 0.75%'. 

We remark that the first result is exact, the second only numerical. For square and triangular 
lattice polygons [5,6],  we also find that ( p ) .  - An. This is essentially one-dimensional 
behaviour. 

Analysis of the perimeter enumeration data in table 2 suggests that the coefficients do 
not increase in the usual manner, that is, as BsUKr, but somewhat faster. Indeed, it can 
easily be shown that the number of connected clusters with site area s and site perimeter 
t enumerated by perimeter increases super-exponentially. This can be seen by considering 
an animal consisting of a n by n square (perimeter 4n so far) with n holes in the interior 
(perimeter 8n). In order to obtain a lower bound, we allow only alternate sites to be occupied 
by a hole. To be more precise, let the individual squares or celIs be identified by integer 
Cartesian coordinates. Then the holes can only occupy those cells with even coordinates. 
This then precludes holes occupying adjacent sites, and hence prevents the animal from 
becoming disconnected. Thus only a fraction of 4 of the available cells are available for 
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Table 2. Raw enumeration oFsite data for enumeration by perimeter (area moments). 

Coefficient of x" in 
. .  ~. ~ . 

n C,,,X" xs,, SX" c,y., s2x'b-s.t 

I 0 0 0~ 
2 0 0 0 
3 0 0 0 
4 1 1 1 
5 0 0 0 

2 4 8 
4 12 36 

6 
7 
8 
9 

10 
11 

12 
32 
I10 
340 

12 1209 
13 4272 
14 16166 
15 61848 
16 246660 
I1 1004883 
I8 4209124 
19 18020832 
20 78898047 
21 352437205 

47 
156 
658 
2424 
10090 
41028 
176864 
762716 
3399962 
15366932 
10960296 
333061552 
1590691053 
1717451656 

181 
772 
4010 
17632 
86118 
403428 
1983072 
9645236. 
48085206 
241 194884 
1228200800 
6320830596 
32934623685 
173552604'240 

22 1605225878 38026124266 925108119430 
23 7445515638 190132975588 4986158651816 
24 35142033027 964288543526 21110686577418 
25 168644213617 4957901690760 149655652431584 
26 822311934788 25831248567708 833044055206460 
21 4071431204506 , 136323179341492 4685351988769396 
28 20457850555113 7284688011 17358 ~26621981398894650 

occupation by holes. There will be 

of arranging the n holes in the n2/4 available positions. Actually this is a lower bound, as 
we are resbicting the sites that a hole may occupy. This directly gives a super-exponential ("p) - (i)" number of animals for a linear number of perimeter sites, as required. More 
rigorous and tighter bounds are straightforward to construct. 

However, the quotient of the corresponding coefficients in columns 3 and 2 of table 2 
gives a series for @e mean area, while the quotient of the coefficients in columns 4 and 
2 gives a series for the mean square area. These two series are not as well behaved or as 
easy to extrapolate as the corresponding perimeter series discussed above. It seems from 
our analysis that 

(U),  An'.5 and that (a2), - En3 

but the results are not totally convincing. We offer these as the most likely simple, rational 
exponents. Note that these are also the exponents found for the mean area and mean square 
area for polygons [7]. Accepting these exponents as exact, we find the following values for 
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the amplitudes: 

Again we see that B X A', implying zero variance to leading order. If we accept these 
exponent values, an analysis of the variance suggests that 

but this must be regarded as rather tentative. For square lattice polygons 171 the 
corresponding amplitude values are A = 0.1416 and B s 0.0213, so we see that B > A' 
in this case. 

A R Conway and A J Gunmann 

A = 0.30 f 0.02 and E = 0.090 f 0.009. 

var({a),) = {a'), - {a); X 0.0163& 

Table 3. Raw enumeration of site data for low-density percolation 

Coefficient of p" in 

0 0 0 0 
1 1 1 1 
2 -2 0 4 
3 0 0 12 
4 1 0 24 
5 
6 
7 
8 
9 

.10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
I 

-1 
2 

-4 
11 

-26 
62 

-142 
333 

-780 
1828 

-4256 
9894 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

52 
108 
224 
412 
844 

1528 
3152 
5036 

11984 
15040 
46512 
34788 

197612 
4036 

929368 
-702592 

21 -23007 - 0  4847552 
22 53682 - 0  -70339% 
23 -125690 0 27903296 
24 295221 0 -54403996 
25 -694759 0 170579740 

Tables 3 and 4 give the first three area moments of site data for low-and high-density 
percolation respectively, where we use the accepted notation q = 1 - p .  The last column 
of table 3 (the second moment) is the low-density mean-size data. A recent analysis of 
this series (with one fewer coefficient) is given in [8]. Using both traditional Dlog Pad6 
approhants  and more powerful methods based on the Roskies 191 transformation (the 
latter can accommodate non-analytic confluent terms) [SI yields 

and 
We have analysed the one-term longer series by differential approximants, (which account 
for confluent and analytic corrections to scaling) and obtain very similar results, notably 

and 

pc = 0.59275 f 0.0001 y = 2.38 i 0.05. 

pc = 0.5928 f O.ooO2 y = 2.40 f 0.04. 
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Table 4. Raw enumeration of site data for high-dewily percolation. 

Coefficient of 4" in 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 1 1 1 
5 -1 -1 -1 
6 2 4 8 
7 0 4 20 
8 2 15 87 
9 -3 5 I25 
IO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

20 
-58 
I63 

-409 
1318 

-4400 
I4526 

-45609 
142904 

-447914 
1416957 

-4493802 
14317184 

-45743704 
146776574 

-472408139 
1524584800 

158 
-234 
1349 

-2713 
13704 

-42676 
172825 

-559013 
2029776 

-6774936 
23900386 

-81129962 
282099620 

-963894132 
3331512669 

-11422580633 
39350336472 

1266 
-170 
13353 

-12133 
164364 

-370768 
2298461 

. -6677661 
31332020 

-103144904 
429747 I86 

-1500383110 
5872475248 

-21026317880 
79599546793 

-287835865137 
1068454376376 

27 -4927518504 - 13$939821080 -3869679402012 
23 15914656731 463383554563 1.1178781096019 
29 -51633916931 -1586767676943 -51239732389715 
30 16-3499C8780 5434335886108 186017185731?56 

Recently Ziff [IO] obtained the extremely accurate estimate p c  = 0.5927460 f 0.0000005 
by simulations and extrapolation to infinite systems. Biasing the approximants at this value 
of pc  allows a somewhat more precise estimate of y = 2.392 =k 0.007 to be made. From 
conformal invariance theory it is believed that y = $ = 2.3888. . . , so all the numerical 
results are consistent with this. 

The data in table 4 are the high-density analogue of table 3 data, and so is expanded 
in powers of q = 1 - p .  The last column and second last column give the'percolation 
probability and mean-size series. To calculate the percolation probability, P ( p ) ,  one must 
divide the third column by p and subtract the quotient from 1. To calculate the mean-size. 
S(p) ,  one must divide the fourth column (as a polynomial) by the third column. The result 
of these manipulations is given in table 9. 

Tables 5 and 6 are the bond analogues of,  the data presented in tables 1 and 2. Thus 
table 5 gives perimeter moments for enumeration by area, and table 6 gives area moments 
for enumeration by perimeter. Analysis of the series in table 5 shows that the coefficients 
in the series grow asymptotically as CLS- '+ '~ ' ,  where 

= 5.2082 i 0.0014- and CO = 0.5084 i 0.0003. 
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Table 5. Raw enumeration of bond data for enumeration by area (perimeter moments) 

Coefficient of x" in 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
IO I1  

I2 
13 
14 

0 
2 
6 
22 
88 
372 
1628 
7312 
33466 
155446 
730534 
3466170 
16576874 
79810756 
386458826 

0 
12 
48 
216 

1020 
4956 
24482 
122368 
616494 
3124292 
15903412 
81229492 
416014902 
2135241008 
10978780964 

0 
12 
384 
2124 
11856 
66264 
369646 
2056732 
11408174 
63086576 
347841504 
1912625616 
10489772682 
57394849480 
313349139916 

15 1880580352 56532459696 170728'2827521 
16 91YO83OJOO 291456857716 9281745918068 
17 45088727820 1504181058?88 50406017097600 
18 221915045488 J769835892168 2J3210333409000 

The mean perimeter (p)" and mean-square perimeter (p'),, are given by the quotients of 
columns 3 and 2, and columns 4 and 2, respectively. We find 

( p ) .  - 1.634~~ and (p'). - 2.670n'. 

Thus we again find zero variance to leading order, as for the site data. More detailed 
analysis permits us to estimate 

The quotient of the corresponding coefficients in  columns 3 and 2 of table 6 gives a 
series for the mean area, while the quotient of the coefficients in columns 4 and 2 gives a 
series for the mean-square area. As in the site case, these two series are not as well behaved, 
nor as easy to extrapolate, as the corresponding perimeter-moment series discussed above. 
Again, our analysis suggests that (a). - An'.5 and that (a'), - Bn3, but again the results 
are not totally convincing. We offer these as the most likely simple, rational exponents, 
and note that they agree with the site analysis above. Accepting these exponents, we then 
estimate A % 0,292 and B % 0.088, which again areconsistent with zero variance to leading 
order. If we accept these exponent values, an analysis of the variance suggests that 

VZ((U),) = (U'). - (U): % 0.014J;; 

but, BS for the site case, this too must be regarded as rather speculative. 
Similarly, tables 7 and 8 are bond analogues of the data given in tables 3 and 4. Thus 

the last column of table 7 gives twice the low-density mean-size series. Table 8 provides 
the raw data necessary to calculate the high-density bond series. Dividing the third column 
of table 8 by 2p and subtracting the result from column 1 gives the percolation probability, 
while to obtain S ( p )  one must divide the fourth column (as a poiynomial) by the third 
column. The results of these calculations are given in table 10. 
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Table 6. Raw enumeration of bond data for enumeration by perimeter (area momenlsl. 

Coefficient of x" in 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

0 
0 
0 
0 
0 
2 
0 
7 
4 

28 
46 

154 
388 

1210 
3390 

10997 
33938 

111730 
371546 

1270598 
4423576 

15763826 
57112746 

211404844 
795372138 

3044659810 
11846314208 
46831536088 

29 187998746668 
30 766020610618 
31 31666475721 18 
32 13275958960735 
33 56425710438434 
34 243044111103808 
35 1060598007196010 
36 4687529484048236 
37 20976931873711572 
38 9502303471 I157024 

0 
0 
0 
0 
0 
2 
0 

16 
12 

108 
212 
858 

2564 
~ ~ 9024 

29564 
106742 
371596 

1358978 
5000420 

18785454 
71621156 

277894978 
1093826984 
437325680 

17729839760 
72921469200 

304038606700 
1284748753026 
5500045485084 

23847716140138 
104696989759720 
465281314729004 

2092576662295336 
9522024048400624 

43829028586609732 
204026497955080580 
9603 18168870200392 

4569441842243693736 

0 
0 
0 
0 
0 
2 
0 

40 
36 

460 
1016 
5222 

17956 
72340 

274708 
1104446 
4327464 

17560918 
71337228 

294158258 
1226011836 
5173273934 

22068841 044 
95257047916 

415786114276 
1835329934024 
81909839941 60 

369570428881 14 
168545233872572 
776906013726950 

17031338614913164 
80978726301629704 

388930070434619124 
18866627058627261 36 
9242383210598391084 

45717912049338544924 
22832222491 9409302396 

36187772i0943i68 

39 435607229985549124 21976051608639892452 I151 110316189447822944 - 

Analysing the bond mean-size series by differential approximants gives . .  

p,(bond) = 0.5007 and y = 2.43 

from first-order differential approximants, and 

pe(bond) = 0.5002 and y = 2.41 

from second-order differential approximants. Biasing the approximants at the known exact 
value of pc = 4 give y = 2.389 f 0.001. in excellent agreement with the presumed exact 
value of 2.3888.. . . 
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Table 7. Raw enumention of bond data for low-density percolation. 

Coefficient of pn in 

n c., P'4'Ss.r c., SP"4'6s.r E',, SZP'4'&.i , ,, . ,. ,. , . 
0 0 0 0 
I 2 2 2 
2 -6 0 12 
3 4 0 36 
4 0 0 96 
5 0 0 252 
6 2 0 600 
7 -2 0 1524 
8 7 0 3336 
9 - 12 0 8432 
IO 28 0 17336 
I 1  -54 0 43976 
12 115 0 86116 
13 -236 0 221664 

404864 14 530 0 
15 -1238 0 1122040 
16 3041 0 1750764 
17 -7430 0 5162572 
18 I7906 0 7002112 

In tables 9 and 10 we give the high-density percolation probability P ( p )  and mean- 
size series S ( p )  for both site and bond percolation respectively, expanded in powers of 
q = 1 - p .  Analysis of the site series by inhomogeneous differential approximants gave only 
coarse critical probability and exponent estimates. For the percolation probability, unbiased 
approximants yielded qc = 0.42 i 0.02, compared to the best Monte Carlo estimate [IO] 
of qc = 0.407 254 024, with an exponent estimate around j3 = 0. Analysis of the series by 
Dlog Pad6 approximants yields the following unbiased estimates of the criticak probability, 
qc = 0.407 f 0.001 with exponent j3 = 0.136 f 0.009.' Using Pad6 analysis, and biasing 
the exponent at & gave qc = 0.4073 f 0.0001. Hence pe  = 0.5927 f 0.0001, which can be 
compared to the best Monte Carlo estimate [IO] of pc  = 0,5927460 f 0.0000005. Biasing 
the approximants with the precise estimate of qc gave the estimate j3 = 0.138 zk0.001 
from inhomogeneous differential approximants, and j3 = 0.1383 & 0.001 from Dlog Pad6 
approximants. 

Analysis of the mean-size series gave similarly imprecise estimates from unbiased 
approximants, while biased inhomogeneous differential approximants gave y' RZ 2.0, with 
y' x 1.8 being the best estimate obtained from biased Dlog Pad6 approximants. 

Analysis of the bond series P ( p )  by unbiased differential approximants was, as for the 
site series, not particularly revealing. A critical percolation probability qc = 0.5004f0.0006 
was found, with exponent j3 = 0.10 i 0.08. However biased Pad6 approximants, using the 
known value qc = 0.5, gave j3 = 0.1387f0.0003, in excellent agreement with the presumed 
exact value, j3 = & = 0.138 8 8 . .  . , while biasing the exponent at & gave the estimate 
qc = 0.500 00 zk 0.000 08. 

Unbiased differential approximant analysis of the mean-size series yielded 

qc = 0.5000 f 0.0007 and 

Biased differential approximant analysis gave y' = 2.056 f 0.02, which can be compared 

y' = 2.04 & 0.08. 
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Table 8. Raw enumeration of bond data for high-density percolation. 

Coefficient of 4" in 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
16 
17 
18 
I9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

0 
0 
0 
0 
0 
2 

-2 
7 

- 12 
28 

-54 
115 

-236 
530 

-1238 
3041 

-7430 
17906 

-42122 
98603 

-233406 
566384 

-1400660 
3491205 

. -8689744 
21603828 

-53837346 
134798956 

-330536144 
851068458 

-2142122208 
541 00 12703 

- 13725274670 
34939580562 

-89059616514 
227116742018 

-579885455698 
1483978267194 

39 -3807376632980 

0 
0 
0 
0 
0 
2 

-2 
16 

-28 
108 

-228 
690 

-1574 
4406 

-10966 
30566 

-79782 
216432 

-561012 
1478748 

-3838780 
10169288 

-268953 16 
71 77201 6 

-190412848 
506071304 

-1342438468 
357345721? 

-9512045212 
25342257280 

-67458334432 
179764504434 

-479550804278 
1281123514138 

-3423303956978 
9 148106476580 

0 
0 
0 
0 
2 

-2 
40 

-76 
472 

-1112 
4674 

-11906 
41730 

- I  12558 
364838~ 

-1022134 
3144460 

-8864580 
26205524 

-73866120 
214494080 

-607694848 
1748569328 

-4949055280 
14097525720 

-39773663592 
112666591000 

-3 17453437728 
895666137236 

-25 16876996064 
7074242270754 

- 19839870974894 
55646364860530 

-155813381269622 
436018322499 176 

-24447977561936 -1218405699287324 
65379524204374 3402881039506162 

-174966302968974 -9495529737282334 

with the presumed exact value, y = $ = 2.3888 ..._ This estimate, lying well outside 
the expected exact value, is most disturbing, We have no satisfactory explanation for this 
discrepancy. 

2. Amplitudes 

Critical amplitudes, being generally non-universal quantities, are less. widely studied than 
exponents or critical probabilities, but nevertheless have interesting properties in their own 
right, particularly when combined in certain universal combinations. There has been little 
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Table 9. High-density site percolation series expansions P(p) and S@) in y = 1 - p 

Coefficient of y" in 

0 1 
1 0 
2 0 
3 0 
4 - I  

.5 0 
6 -4 
7 -8 
8 -23 
9 -28 

10 -186 
11 48 
12 -1301 
13 1412 
14 -12292 
15 30384 
16 -142441 
17 416612 
18 -1613164 
19 5 I6 I772 
20 -la738614 
21 62391348 
22 -219708272 
23 744185860 

25 8835253824 
26 -30515082648 
21 104424738432 

29 1227808860812 
30 -4606527025296 

24 -25a7326809 

28 -35895a816131 

1 
0 
4 

20 
76 

100 
764 

-196 

-9316 
91524 

-240248 
1259944 

-3978772 
17210084 

-59160400 
233874228 

-827672212 

-11232481096 
41519884516 

- 149099004752 
542518525488 

-1942522817232 

'-24903166794592 
88817460289652 

6480 

3133896060 

~9a90aizso384 

work on this problem for nearly 20 years, since Sykes et al [II-131 presented the first 
extensive study of percolation amplitudes. 

Before presenting our own amplitude analysis, we emphasize that it is particularly 
important to establish a notation when giving critical amplitudes. Sykes et al [ll-131 
defined the amplitudes as follows: 

and 

X P )  - C ( P ,  - PY for P < pC. 

Note that replacing ( p  - pc) by (qc - q) in the above equations leaves the amplitudes 
unchanged. 

In a comprehensive review, Essam [14] redefined the amplitudes in a manner that is 
more consistent with other critical phenomena amplitudes, such as king models, as 

P ( P )  B ( p l p C  - 1)' and S(P) - C-(p /pc  - for p > pc 
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Table 10. Hish-density bond percolation series expansions P(p) and S(p) in y = I - p. 

Coefficient of y" in 

n 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

I 
0 
0 
0 
0 
0 

- 1  
0 

-8 
6 

-48 
66 

-279 
508 

-1695 
3788 

-11495 
28396 

-79820 
200686 

-538688 
1380702 

-3703942 
9143716 

-26142292 
69064132 

-183971520 
487247714 

- 1299480892 
3456541714 

-9214586926 

S(P) 
1 
0 

12 
-12 

74 
-104 

480 
-802 
3060 

-6964 
25278 

-62968 
184996 

-432864 
I1  87324 

-3076050 
9288350 

-26357140 

~, . 

75320592 
-198150494 

527665840 
-1408510098 

3952628584 
-11062725766 

30776037860 
-83525950010 
227013906708 

-619944518810 
,171~17801202 

-4703976303306 
12899099045260 

31 2451.1580290 -35282516017726 
32 -65367671927 96803622888380 
33 174407730212 -265803577307442 
34 -466154026857 
35 1245497951632 
36 -3328555286658 
37 8895433494310 
38 -23794328607877 
39 63688822876610 

and 

S ( p )  ?.. c+(1- p /pJY  for p < pc. 
' 

~ He also defined the critical isotherm amplitude E through P ( p c ,  h )  ,., where 
h is a magnetic field, the introduction of which is described in [13]. We expect C+/C- 
to be universal, and also the combination R' = (C+)L/sE-lB'- ' /s .  This latter universal 
quantity follows from latticdattice scaling, as developed by Betts etul [15], and applied to 
percolation theory by Stauffer [161. With our data we have been able to give more accurate 
estimates of B ,  C' and C-, and have refined the estimate of E given in [13]. 
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We have estimated the amplitudes in a fairly simple-minded manner, from Pad6 
approximants to (pc - p)[S(p)]'/~lz,, which gives estimates of pc[C']'/Y, from which 
C+ can immediately be obtained. Inhomogeneous differential approximants offer greater 
accuracy, in principle, but involve substantially greater computation. We found little 
difference in the achieved accuracy, so we used the computationally simpler Pad6 method. 

Note too that, as the expansion variable for the high-temperature quantities is q .  care 
must be taken to ensure that one calculates the correct amplitude. 

In all cases we have used the assumed exact value of the exponents, and the best estimate 
of the critical probability or the exact value, as available. The results are given in table 11. 
The error estimates result from the spread of the approximants alone. The exponents are 
exact, and the site critical probability is very precise. Thus the biasing is not a source of 
error. The estimates of B and C+ are quite precise, and lie outside the earlier estimates of 
Sykes et al [ 11-13]. Our estimates of C- are far less accurate than the estimates of C+, 
but are nevertheless the most accurate estimates yet made of these amplitudes. 

From scaling theory we would expect C'/C- to be universal, and we find this ratio 
to be 41:;; for site percolation, and 49:;' for bond percolation. While these estimates are 
consistent with equality, they are not very precise. In order to test the universality of the 
ratio R' = (C-)'lsE-'B'-]ls, we have taken the estimates [I31 E = 1.090(25) (site) and 
E = 1.096(2) (bond) which were made assuming the then current best estimate of 6 = 18, 
and performed a simple analysis that shows that a change of 6 to the exact value 6 = 18.2 
produces a corresponding change to E = 1.100(25) (site) and E = 1.106(2). Using our 
estimate of C- certainly produces estimates of R' that agree for bond and site percolation, 
but, because the uncertainty in C- is so great, this is not a stringent test. Rather, we assume 
universality of C-/C+, and instead study the ratio R = (C+)1/8E-'B1-'/a. Since the error 
of C+ is so much smaller, this is a more demanding test. We find the values R = 1.236(30) 
(site) and R = 1.238(5) (bond), in agreement with the earlier estimate R % 1.25 given in 

The site estimate of E ,  and hence R, could probably be improved upon slightly by 
re-analysing the original data [13] using the best Monte Carlo estimate [lo] of pcr but we 
have not done this. 

The amplitudes C' and B quoted in [14] are, in fact, the values obtained by Sykes et 
al. Thus the entries in table 3 of [I41 labelled C+ and B should have been labelled C and 

r141. 

E. 

3. Summary 

We have investigated both bond and site animals, enumerated by both perimeter and area. 
We have obtained the asymptotic form for the number of bond and site animals of a given 
area, the mean perimeter and mean-square perimeter and the mean =ea and mean-square 
area. The mean perimeter, for both bond and site animals is found to behave qualitatively 
like the corresponding quantity for directed animals and self-avoiding polygons, in that 
(p}"  - n and ( p 2 ) ,  - n'. Similarly, the mean area for both bond and site animals appears 
to be qualitatively similar to self-avoiding polygons, in that (a), - nz and (a'), - n3. The 
variance of all these quantities has also been calculated. 

For percolation, we give both biased and unbiased estimates of the bond and site 
critical probabilities, the high- and low-temperature mean-size exponents and the percolation 
probability exponent. Apart from some unexplained results for the high-temperature bond 
percolation mean-size exponent, all our results are consistent with the presumably exact 
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exponent estimates from conformal invariance theory 1171, notably fi  = & and y = z ,  
the exact value pdbond) =~ f and the best Monte Carlo estimate [lo] for pc(site). Critical 
amplitudes for all the above quantities are also estimated. 

In table 11 we summarize all our results. 

Table 11. Summary of results, 

Description Quantity Site Bond 
. .  

Number of animals (n = area) c, (0.3160(5))(4.06265(5))"/n (0.5084(3))(5.2082(14))"/n 
Mean perimeter (n =area) (P). 1.195" 1.634,~ 
variance of perimeter V N ( P i . )  0.3885n 0.48n 
Mean-square perimeter (n =area) (pz). 1.195%' 1.6342n2 
Mean a m  (n = perimeter) (a). 0.30n'.5 0.292n1.5 
Mean-square area (n = perimeter) (a2i8 0.302n3 0.29ZZn3 

0.014& variance of area 
Critical probability' PC 0.5928(2) 0.5005(10) 
Critical probabilityb Pu 0.5927(1) OSOOOO(8) 
Mean size exponenP Y 2.40(4) 2.42(4) 
Mean size exponentb Y 2.392(7) 2.389(1) 
Critical amplitudeb C- 0.5745(30) 0.785(6) 
Mean size exponenrZ Y' 2.0(6) 2.04(8) 
Mean size exponentb Y' 2.0(4) 2.06(2) 
Critical amplitudeb C- 0.014(6) 0.016(3) 
Perc. probability exponentb ,9 0.136(9) O.lO(8) 
Pert. probability exponentb p 0.1383(10) 0.1387(3) 
Critical amplitudeb B 1.4290(3) 1.4139(15) 

W ( a ) . ) ~  0.0163& . .  

Unbiased. 
Biased. 
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